Manages forecasts of one CWE.
cwe CWE ID (default NA)
start_year the first year of a time period (default NA)
end_year the last year of a time period (default NA)
train the training set (default NA)
test the test set (default NA)
fcast the forecasts as a "forecast
" object (default NA)
assessment the MAE, RMSE, MAPE and MASE in numeric
form (default NA)
fcast_period the number of months necessary to forecast (default NA)
residuals_not_random the logical value indicating whether the models' residuals are not uncorrelated; cannot be used in the cases of ARFIMAModel, BaggedETSModel, StructTSModel and NNARModel for which ACF plots must be used instead (default F)
residuals_not_normal the logical value indicating whether the models' residuals are not normally distributed (default F)
bootstrap_not_used the logical value indicating whether the forecast intervals were not generated from bootstrapped residuals (default T)
pi_ignored the logical value; when F, then the forecast intervals can be taken seriously, otherwise the model's residuals must be checked (default F)
significance_level the significance level used in the Shapiro-Wilk, Ljung-Box and Breusch-Godfrey hypothesis cheking (default 0.05)
measures = c("MAE", "RMSE", "MAPE", "MASE") a character
vector attribute used in the source code
tset_char = "Test set" a character
attribute used in the source code (default F)
new(cwe, cwe_ts, start_year, end_year, end_month) creates new NVD object
getStartYear() returns private attribute start_year
getEndYear() returns private attribute end_year
getTrainingSet() returns private attribute train
getTestSet() returns private attribute test
getFcasted() returns private attribute fcast
getMethod() returns attribute method
of private attribute fcast
getAssessment() returns private attribute assessment
getFcastPeriod() returns private attribute fcast_period
getTSetChar() returns private attribute tset_char
getResiduals(model) returns residuals from model
processed by zoo::na.approx
; model
is obtained from FitModel's method getFitted
or NVDModel's method getFcasted
getMergedTrainTestSet() returns a stats::ts
object after merging both the training set and the test set
getSignificanceLevel() returns private attribute significance_level
areResidualsNotRandom() returns private attribute residuals_not_random
areResidualsNotNormal() returns private attribute residuals_not_normal
isPiIgnored() returns private attribute pi_ignored
isBootstrapNotUsed() returns private attribute bootstrap_not_used
setSignificanceLevel(significance) sets significance
as the value of private attribute significance_level
setResidualsNotRandom(testresult) sets testresult
as the value of private attribute residuals_not_random
setResidualsNotNormal(testresult) sets testresult
as the value of private attribute residuals_not_normal
setBootstrapNotUsed(logical_value) sets logical_value
as the value of private attribute bootstrap_not_used
setPiIgnored(logical_value) sets logical_value
as the value of private attribute pi_ignored
setFcasted(fcast_result) sets fcast_result
as the value of private attribute fcast
setFcastPeriod(period) sets period
as the value of private attribute fcast_period
assessModel() calculates and sets MAE, RMSE, MAPE, MASE values as the value of private attribute assessment
testResidualsRandomnessBox(residuals, df) uses residuals and degrees of freedom arguments and performs the Ljung-Box test; returns whether the obtained p-value is less or equal than the significance level
testResidualsRandomnessBreusch(residuals, df, fitted_model) uses residuals, degrees of freedom and fitted model arguments and performs the Breusch-Godfrey test; returns whether the obtained p-value is less or equal than the significance level
testResidualsNormality(residuals) uses residuals arguments and performs the Shapiro-Wilk test; returns whether the obtained p-value is less or equal than the significance level
getPlot() returns a plot of forecast results and actual values as a red line when the forecasting results are available in the private attribute fcast
; adds an exclamation mark to y-axis label when self$areResidualsNotRandom() | (self$areResidualsNotNormal() & self$isBootstrapNotUsed()) | self$isPiIgnored()
compareCombinedAccuracy(fcast1, fcast2) takes two collections of forecasts and returns a logical value indicating whether the first collection of forecasted values has bigger amount of smaller MAE, RMSE, MAPE and MASE values than the other collection of forecasted values
findLambda(training_set) returns the lambda found by forecast::BoxCox.lambda based on the training set
This class's private method `residuals_lag` is using GPL-3 licensed code from (R package "forecast" by Rob Hyndman, Mitchell O'Hara-Wild, Christoph Bergmeir, Slava Razbash and Earo Wang) https://github.com/robjhyndman/forecast/blob/c87f33/R/checkresiduals.R from lines 122 and 123 to calculate the lag parameter.